首页 青云排行榜 知识中心 控制台

假设只有少量数据来解决某个具体问题,但有有个预先训练好的神经网络来解决类似问题。可以用下面哪些方法来利用这个预先训练好的网络(     )

把除了最后一层外所有的层都冻结,重新训练最一层

重新训练整个模型

只对最后几层进行微调

对每一层模型进行评估,只使用少数层

如果有个预先训练好的神经网络, 就相当于网络各参数有个很靠谱的先验代替随机初始化. 若新的少量数据来自于先前训练数据(或者先前训练数据量很好地描述了数据分布, 而新数据采样自完全相同的分布), 则冻结前面所有层而重新训练最后一层即可;但一般情况下, 新数据分布跟先前训练集分布有所偏差, 所以先验网络不足以完全拟合新数据时, 可以冻结大部分前层网络, 只对最后几层进行训练调参(这也称之为fine tune)。
关于我们
公司简介
联系我们
联系我们
售前咨询: leizhongnan@eval100.com
售后服务: 0755-26415932
商务合作: support@eval100.com
友情链接
金蝶软件
快递100
关注我们
Copyright © 2023-2023 深圳慧题科技有限公司 粤ICP备2023109746号-1 粤公网安备44030002001082