首页 青云排行榜 知识中心 控制台

以下说法中正确的是(     )

SVM对噪声(如来自其他分布的噪声样本)鲁棒

在AdaBoost算法中,所有被分错的样本的权重更新比例相同

Boosting和Bagging都是组合多个分类器投票的方法,二都是根据单个分类器的正确率决定其权重

给定n个数据点,如果其中一半用于训练,一般用于测试,则训练误差和测试误差之间的差别会随着n的增加而减少

A. SVM解决的是结构风险最小, 经验风险处理较弱, 所以对数据噪声敏感.
B. AdaBoost算法中, 每个迭代训练一个学习器并按其误分类率得到该学习器的权重alpha, 这个学习器的权重算出两个更新比例去修正全部样本的权重: 正样本是exp(-alpha), 负样本是exp(alpha). 所以所有被分错的样本的权重更新比例相同.
C. bagging的学习器之间无权重不同, 简单取投票结果; Boosting的adaboost根据误分类率决定权重, boosting的gbdt则是固定小权重(也称学习率), 用逼近伪残差函数本身代替权重.
D: 根据中心极限定律, 随着n的增加, 训练误差和测试误差之间的差别必然减少 -- 这就是大数据训练的由来。
关于我们
公司简介
联系我们
联系我们
售前咨询: leizhongnan@eval100.com
售后服务: 0755-26415932
商务合作: support@eval100.com
友情链接
金蝶软件
快递100
关注我们
Copyright © 2023-2023 深圳慧题科技有限公司 粤ICP备2023109746号-1 粤公网安备44030002001082